ZAMONAVIY ELEKTR ENERGETIKA TIZIMLARIDA NASOS STANSIYALARINING ENERGIYA SAMARADORLIGINI OSHIRISHDA SUN’IY NEYRON TARMOQLARIDAN FOYDALANISH
PDF

Keywords

Elektr energetika tizimi, nasos stansiyasi, energiya samaradorligi, sun’iy neyron tarmoqlari, energiya tejash, avtomatlashtirilgan boshqaruv

Abstract

Ushbu maqolada zamonaviy elektr energetika tizimlarida nasos stansiyalarining energiya samaradorligini oshirish masalalari tadqiq qilinadi. Nasos stansiyalari elektr tizimlarida katta energiya sarfini talab qiladi, shuning uchun ularning ishlashini optimallashtirish va energiya tejash muhim ahamiyatga ega. Maqolada sun’iy neyron tarmoqlari yordamida nasos stansiyalarining ishlash holatini monitoring qilish va boshqarish usullari taklif etiladi. Tadqiqot natijalari ko‘rsatadiki, neyron tarmoqlari asosida ishlab chiqilgan tizimlar energiya tejashni sezilarli darajada oshirishi mumkin va tizim samaradorligini yaxshilaydi. Ushbu yondashuv zamonaviy elektr energetika tizimlarida energiya samaradorligini oshirish va boshqaruvni avtomatlashtirish uchun amaliy imkoniyatlar yaratadi.

PDF

References

1. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. MIT Press.

2. Haykin, S. (2009). Neural networks and learning machines (3rd ed.). Pearson.

3. Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323(6088), 533–536. https://doi.org/10.1038/323533a0

4. Zeng, X., Wang, J., & Li, Y. (2019). Energy efficiency optimization in pump stations using artificial neural networks. Energy, 171, 1203–1212. https://doi.org/10.1016/j.energy.2019.01.067

5. Базарбаев, М. И., & Сайфуллаева, Д. И. (2022). РахиǦ мов Б Т., Ж˲ раева З Р. Роль информационных техǦ нологий в медицине и биомедицинской инженеǦ рии в подготовке будущих специалистов в пеǦ риод цифровой трансформации в образовании. ТТА Ахборотномаси, 10(10), 8Ǧ13.

6. Марасулов, А. Ф., Базарбаев, М. И., Сайфуллаева, Д. И., & Сафаров, У. К. (2018). Подход к обучению математике, информатике, информационным технологиям и их интеграции в медицинских вузах.

7. Izzatillaevna, S. D. (2025). USING MATHEMATIC-STATISTICAL METHODS IN MEDICAL RESEARCH FOR RAPID DIAGNOSIS. Web of Discoveries: Journal of Analysis and Inventions, 3(5), 71-74.

8. Bazarbaev, M. I., & Sayfullaeva, D. I. (2025). WHEN ALGORITHMS MEET ANATOMY: UZBEKISTAN'S MEDICAL EDUCATION IN THE AGE OF TECHNOLOGY. Central Asian Journal of Medicine, (4), 35-39.

9. Baxtiyorovna, E. D., Alisherovna, F. N., & Hozhievich, B. E. (2025). HISTORY OF THE DISCOVERY OF RADIOACTIVITY AND X-RAYS, NUCLEAR EXPLOSIONS EXPLANATION OF THE PHENOMENON RESEARCH USING INTERACTIVE METHODS. Web of Discoveries: Journal of Analysis and Inventions, 3(5), 61-65.

10. Baxtiyorovna, E. D., & Alisherovna, F. N. (2025). TECHNOLOGICAL SUPPORT FOR PROTON THERAPY. Web of Scientists and Scholars: Journal of Multidisciplinary Research, 3(2), 80-85.

11. Fayziyeva, N., & Farruh, M. (2023, December). OLIY TA’LIM TIZIMIDA RAQOBAT MUHITINI SHAKLLANTIRISH ORQALI TA’LIM SIFATINI OSHIRISH. In International conference on multidisciplinary science (Vol. 1, No. 6, pp. 80-81).

12. Fayziyeva, N. (2025). THE INTENSITY OF DIABETES CASES AMONG THE POPULATION OF BUKHARA REGION OVER THE PAST 5 YEARS. International journal of medical sciences, 1(1), 158-161.

13. Baxtiyorovna, E. D., Alisherovna, F. N., & Jurayeva, U. O. N. (2024). PROPERTIES OF ELECTRON AND NEUTRON THERAPY. Web of Medicine: Journal of Medicine, Practice and Nursing, 2(10), 137-141.

14. Nurbaeva, H. (2022). Formation Of National Values In Students Of Higher Education Institutions.

15. Botirovna, N. X. (2024). OILADA BOLA TARBIYASI TOIFALARI VA OQIBATLARI. Journal of Integrated Education and Research, 3(3), 98-103.

16. Nurbaeva, H. B., & Mirzaev, B. U. O. (2022). ABU RAYHON MUHAMMAD IBN AHMAD AL-BYERUNIY YOSHLAR TARBIYASIDAGI AHAMIYATI. Academic research in educational sciences, (3), 107-113.

17. Botirovna, N. H. (2024). DEVELOPMENT OF NATIONAL VALUES IN STUDENTS DISTINCTIVE FEATURES. Web of Medicine: Journal of Medicine, Practice and Nursing, 2(1), 1-2.

18. Xabiba, N., & Saidaxon, F. (2023). PEDAGOGIK MAHORATNING VA UNING TARKIBIY QISMLARI. Научный Фокус, 1(7), 802-806.

19. Nurbaeva, H. B., & Muxammadqodir, O. R. (2022). MILLIY QADRIYATLAR HAR BIR MILLATNING O ‘TMISHI, BUGUNI VA KELAJAGI. Academic research in educational sciences, (3), 195-197.

20. Tojibaev, K. S., Beshko, N. Y., Batashov, A. R., Karimov, F. I., Lee, D. H., Turginov, O. T., ... & Tajeddinova, D. (2017). Ten new records of vascular plants for the flora of Uzbekistan (Asteraceae). Korean Journal of Plant Taxonomy, 47(3), 171-179.

21. Mun, T. O., Khabilov, N. L., Usmanov, F. K., Salimov, O. R., Shukparov, A. B., & Ilyas, S. (2021). Experience of Experimental Application of Rational Design of Domestic Dental Implant. Central Asian Journal of Medical and Natural Science, 2(5), 5-11.

22. Мун, Т., Хабилов, Н., & Усманов, Ф. (2021). Применение дентальных имплантатов различной конструкции для восстановления дефектов зубных рядов. Медицина и инновации, 1(4), 436-442.

23. Khabilov, N., Usmonov, F., & Mun, T. (2022). Assessment of changes in the quality of life of patients with dentition defects before and after prosthetics and dental implantation using an implant implant. uz. Eurasian Journal of Medical and Natural Sciences, 2, 6.

24. Хабилов, Н., Мун, Т., Усмонов, Ф., Рашидов, Р., & Меликузиев, К. (2016). К вопросу применения биоактивных покрытий для дентальных имплантатов. Стоматология, 1(1 (62)), 88-95.

25. Lukmanovich, H. N., Olegovna, M. T., & Komilzhonovich, U. F. (2016). Densitometric study of degree of osteointegration of the dental implant “implant. Uz” in experimental conditions. European science review, (3-4), 244-245.

26. Liu, H., Zhang, T., & Chen, S. (2020). Predictive maintenance of pumping systems using machine learning. IEEE Transactions on Industrial Informatics, 16(5), 3201–3210. https://doi.org/10.1109/TII.2019.2958851

27. Chen, K., & Hu, W. (2018). Application of neural networks in power systems energy management. International Journal of Electrical Power & Energy Systems, 98, 170–179. https://doi.org/10.1016/j.ijepes.2018.01.024

28. Singh, R., & Kumar, P. (2021). Smart pump station control for energy savings using AI techniques. Renewable Energy, 165, 1235–1245. https://doi.org/10.1016/j.renene.2020.10.087