Abstract
Ushbu maqolada filiform 3-Li algebralarning strukturalari, ularning klassifikatsiyasi hamda yechiluvchan kengaytmalarning o‘lcham bo‘yicha modellanishi masalalari o‘rganiladi. 3-Li algebralar klassik Lie algebralarning umumlashmasi bo‘lib, uch elementli antikommutativ ko‘paytma va Filippov identiteti orqali aniqlanadi. Filiform 3-Li algebralar esa nilpotent 3-Li algebralarning alohida turi bo‘lib, ularning nilpotentlik darajasi maksimal bo‘ladi va ular struktura jihatidan oddiy, ammo chuqur algebraik xossalarga ega. Yechiluvchan kengaytmalar 3-Li algebralarni yangi o‘lchamdagi algebralarga umumlashtirish imkonini beradi. Bunday kengaytmalarni klassifikatsiya qilishda gomologik yondashuvlar, ayniqsa ikkinchi gomologik guruhlar muhim ahamiyatga ega. Maqolada kengaytmalarni o‘lcham (ya’ni, bazis elementlar soni) ortishi bilan qanday tarzda modellashtirish mumkinligi ko‘rsatiladi. Shu maqsadda differensial komplekslar, deformatsiyalar nazariyasi va ko‘rsatkichli funksiyalardan foydalaniladi.
References
1. Nambu, Y. (1973). Generalized Hamiltonian dynamics. Physical Review D, 7(8), 2405–2412.
2. Filippov, V. T. (1985). n-Lie algebras. Siberian Mathematical Journal, 26(6), 879–891.
3. Hanlon, P., & Wachs, M. (1992). On Lie k-algebras. Advances in Mathematics, 113(2), 206–236.
4. Balinskii, A. A., & Novikov, S. P. (1985). Poisson brackets of hydrodynamic type, Frobenius algebras and Lie algebras. Soviet Math. Dokl., 32, 228–231.
5. Rakhimov, A., & Khudoyberdiyev, A. (2016). On classification of low-dimensional n-Lie algebras. Linear and Multilinear Algebra, 64(4), 707–718.
6. Casas, J. M., Ladra, M., Pirashvili, T. (2002). Triple cohomology of Lie algebras. Journal of Algebra, 252(2), 249–260.
7. Fialowski, A., & Penkava, M. (2005). Extensions of (super) Lie algebras. Communications in Contemporary Mathematics, 7(2), 145–165.
8. Ancochea Bermúdez, J. M., Campoamor-Stursberg, R. (2011). Graded contractions and cohomology of Lie algebras. Acta Applicandae Mathematicae, 115, 3–20.
9. Bagger, J., & Lambert, N. (2007). Gauge symmetry and supersymmetry of multiple M2-branes. Physical Review D, 77(6), 065008.