Abstract
Hujayra darajasidagi biologik tahlillarni aniq va tezkor amalga oshirish zamonaviy biotibbiyotning eng dolzarb yo‘nalishlaridan biridir. Shu nuqtai nazardan, tasvirlovchi oqim sitometriya (IFC – Imaging Flow Cytometry) texnologiyasi hujayralarni oqim holatida mikroskopik aniqlikda kuzatish imkoniyatini yaratdi. U Time Delay Integration (TDI) va CCD texnologiyalarining kombinatsiyasiga asoslangan bo‘lib, flüoressent signalni kuchaytirish va yuqori sifatli tasvirlar olishni ta'minladi. Ushbu maqolada tasvirlovchi oqim sitometriya texnologiyalarining asosiy tamoyillari, texnik yutuqlari va amaliy qo‘llanilishi tahlil qilinadi.
References
Rattani, A., & Saxena, N. (2012). Biometric systems and their applications in health care. International Journal of Computer Science and Information Technology, 3(1), 45-51.
2. Woodward, J. D., Orlans, N. M., & Higgins, P. T. (2003). Biometrics: Identity Assurance in the Information Age. McGraw-Hill.
3. Belhumeur, P. N., Hespanha, J. P., & Kriegman, D. J. (1997). Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection
4. Zhao, W., Chellappa, R., Phillips, P. J., & Rosenfeld, A. (2003). Face Recognition: A Literature Survey
5. Face Recognition Using Machine Learning Algorithm Based on Raspberry Pi 4b. Abdul Fadlila, Denis Prayogib, 2022.
6. Viola, P., & Jones, M. (2001). Rapid Object Detection using a Boosted Cascade of Simple Features. 2001
7. Turk, M., & Pentland, A. (1991). Eigenfaces for Recognition. Journal of Cognitive Neuroscience, 3(1), 71-86.
8. Belhumeur, P. N., Hespanha, J. P., & Kriegman, D. J. (1997). Eigenfaces vs. Fisherfaces: Recognition using Class Specific Linear Projection. 19(7), 711-720.
9. Digital Image Processing- Rafeal C. Gonzalez, Richard E. Woods, 3rd Edition, Pearson, 2008
10. Digital Image Processing and analysis-human and computer vision application with using CVIP Tools – CRC Press, 2011.