Abstract
Mazkur ilmiy maqolada bo‘lajak o’qituvchilarning eshitib tushunish ko’nikmalarini baholashda, hozirgi kunda ommalashib borayotgan, sun’iy intellekt texnologiyalaridan foydalanish yo’llari tadqiq qilinadi. O’qituvchining pedagogik faoliyatida tinglab tushunish ko‘nikmalari pedagog hamda talaba orasidagi o’zaro unumli muloqotni yuzaga kelishida, shu bilan birga, o’quvchilar bilimini aniq va samarali baholashda muhim ahamiyatga ega. An'anaviy baholash usullari hozirda cheklangan bo’lsada, pedagogik faoliyatda sun’iy intellektni o’z sohasiga integratsiya qilish ushbu jarayonni ko’proq unumli hamda shaxsga yo’naltirishga imkoniyat beradi.
Ushbu maqola bo’lajak o’qituvchilarning tinglab tushunish ko‘nikmalarini aniqlash hamda baholash uchun sun’iy intellekt yordamida yaratilgan metodologiyalar va dasturiy ta'minot tizimlarini ko’rib chiqadi. Mavjud tizimlar o’rganuvchilarning tinglab tushunish ko‘nikmalarini baholashni avtomatlashtirish, ularning xato va kamchiliklarini topishni va natijalarni tahlil qilishni osonlashtirishga yordam beradi. Shu bilan birga, innovatsion metodologiyalar, masalan, tabiiy tilni qayta ishlash, ovozni tinglab tahlil qilish hamda muloqotni tushunib yetish algoritmlarining pedagogik baholashdagi qulayliklari tahlil qilinadi.
References
1. Baker, M. J., & Lally, M. (2019). Artificial Intelligence in Education: Applications and Future Prospects. Springer.
2. Gros, B. (2016). The Role of Technology in Educational Innovation. Educational Technology & Society, 19(4), 18-28.
3. Kumar, V., & Sinha, P. (2020). Artificial Intelligence and Machine Learning in Education. Elsevier.
4. Chaudhary, P., & Sharma, M. (2019). Exploring the Impact of Artificial Intelligence on Education: Opportunities and Challenges. Educational Research Review, 14, 125-135.
5. Huang, R. H., & Spector, J. M. (2021). Innovative Pedagogy: Incorporating Artificial Intelligence into Educational Practices. Springer Nature.
6. Chen, L., & Lee, J. (2020). AI in Education: Learning, Teaching, and Assessment. Springer International Publishing.
7. Woolf, B. P. (2010). Building Intelligent Interactive Tutors: Student-Centered Strategies for Revolutionizing E-Learning. Morgan Kaufmann.
8. Zawacki-Richter, O., & Anderson, T. (2017). Theories and Practices of Distance Education. Routledge.
9. Woolf, B. P., & Arroyo, I. (2013). Intelligent Tutoring Systems: A Review of Artificial Intelligence and Education Applications. Educational Technology Research and Development, 61(5), 791-810.
10. Bates, A. W. (2019). Teaching in a Digital Age: Guidelines for Designing Teaching and Learning. Tony Bates Associates Ltd.
11. Baker, R. S., & Siemens, G. (2014). Educational Data Mining and Learning Analytics: Applications to Smart Learning Systems. Springer.
12. Singh, G., & Aggarwal, A. (2017). Artificial Intelligence for Education: Future Trends. International Journal of Advanced Research in Computer Science, 8(3), 15-22.
13. Liu, T., & Wang, Y. (2018). Natural Language Processing for Learning and Teaching Assessment. International Journal of Artificial Intelligence in Education, 28(1), 65-80.
14. Gonzalez, C. P., & Rivera, J. S. (2020). Machine Learning and Natural Language Processing for Pedagogical Innovations. International Journal of Educational Technology, 34(2), 123-137.