DATA SCIENCE JARAYONLARI
PDF

Keywords

ma'lumotlarni yig‘ish, tozalash, tahlil qilish, modellash, va natijalarni taqdim etish, ma’lumotlarni vizualizatsiya qilish, metodologik yondashuv.

Abstract

Data science ko‘p tarmoqli soha bo‘lib, u tartiblangan va tartiblanmagan ma’lumotlardan tushuncha va bilimlarni olish uchun ilmiy usullar va jarayonlar, algoritmlar va tizimlardan foydalanadi. U murakkab ma’lumotlar to‘plamlarini tahlil qilish va sharhlash uchun turli sohalardagi tajribalarni, jumladan, statistika, informatika, matematika va ma’lum bir sohaga oid bilimlarni birlashtiradi. Data science har bir sohada qarorlar qabul qilishda va yangi bilimlarni kashf etishda yordam beradigan muhim bir soha hisoblanadi. Ma'lumotlar ilm-fani kompaniyalar va tashkilotlar uchun muhim qarorlar qabul qilishda, jarayonlarni optimallashtirishda, marketing strategiyalarini ishlab chiqishda va mijozlar ehtiyojlarini tushunishda yordam beradi.

PDF

References

1. "Data Science from Scratch: First Principles with Python" - Joel Grus

2. "Python for Data Analysis" - Wes McKinney

3. "An Introduction to Statistical Learning: with Applications in R" - Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani

4. "Deep Learning" - Ian Goodfellow, Yoshua Bengio, Aaron Courville

5. "The Elements of Statistical Learning: Data Mining, Inference, and Prediction" - Trevor Hastie, Robert Tibshirani, Jerome Friedman

6. “Pattern Recognition and Machine Learning” - Christopher M. Bishop

7. “Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow” - Aurélien Géron

8. “Data Science for Business: What You Need to Know about Data Mining and Data-Analytic Thinking” - Foster Provost & Tom Fawcett