Abstract
Ushbu maqolada biz o'lchamlarni kamaytirishning eng mashhur usullaridan birini, ya'ni asosiy komponentlar tahlilini (PCA) muhokama qilamiz. Asosiy komponentlar tahlili populyatsiya genetikasi, mikrobioma tadqiqotlari va atmosfera fanlari kabi ko'plab sohalarda qo'llaniladi.
References
1. Markram, H. (2012). The Human Brain Project. Neuron, 74(1), 28-45.
2. Kandel, E. (2000). Principles of Neural Science. McGraw Hill.
3. Poon, C.-S., & Zhou, K. (2011). Neuromorphic Silicon Neurons and Large-Scale Neural Networks: Challenges and Opportunities. Frontiers in Neuroscience, 5(108).
4. Furber, S. (2016). Large-Scale Neuromorphic Computing Systems. Journal of Neural Engineering, 13(5), 051001.
5. Tojimamatov, I., & G’ulomjonova, S. (2024). NEYRO KOMPYUTERLAR VA ULARNING ARXITEKTURASI. Development of pedagogical technologies in modern sciences, 3(6), 10-16.
6. Nurmamatovich, T. I. (2024). NEYROKOMPYUTERLARNING AMALIYOTDA QO ‘LLANILISHI. worldly knowledge conferens, 8(1), 287-291.
7. Mirzaakbarov D. D., G’oyibjonova G. KOMPIYUTERLARNING MA’LUMOTLARNI QAYTA ISHLASH BILAN BO’G’LIQ BIROR MASALANI YANGI AXBOROT TEXNOLOGIYASI DOIRASIDA SAMARALI BAJARISH UCHUN QO’LLANILADIGAN IMKONIYATLARI //Models and methods in modern science. – 2023. – Т. 2. – №. 12. – С. 90-93.
8. Tojimamatov I., G’ulomjonova S. NEYRO KOMPYUTERLAR VA ULARNING ARXITEKTURASI //Development of pedagogical technologies in modern sciences. – 2024. – Т. 3. – №. 6. – С. 10-16.
9. Abdullayev S., Xomidova M. Radial neyron tarmoqlari //Журнал академических исследований нового Узбекистана. – 2024. – Т. 1. – №. 6. – С. 49-52.
10. Yoshua Bengio, Ian Goodfellow, Aaron Courville, "Deep Learning" - (2016)