SUN’IY INTELLEKT ASOSIDA AVTOMATIK TARJIMA TIZIMLARIDAGI TIL XATOLARINI ANIQLASH VA TUZATISH: NAZARIY ASOSLAR.
PDF

Keywords

sun’iy intellekt, tarjima tizimlari, lingvistik xatolar, grammatika tahlili, chuqur o‘rganish, NLP, transformer modellari

Abstract

Maqolada sun’iy intellekt texnologiyalaridan foydalangan holda avtomatik tarjima tizimlarida uchraydigan til xatolarining nazariy asoslari ko‘rib chiqiladi. Xatolarning turli shakllari, ularni aniqlash va bartaraf etish jarayonlari, zamonaviy AI modellarining bu boradagi imkoniyatlari tahlil qilinadi. Ayniqsa, chuqur o‘rganish asosidagi algoritmlar grammatik va stilistik muammolarni qanday hal qilishi muhokama qilinadi. Shuningdek, o‘zbek tili kabi morfologik jihatdan murakkab tillar uchun mavjud muammolar va istiqbolli yechimlar tavsiflanadi.

PDF

References

1. Bahdanau, D., Cho, K., & Bengio, Y. (2015). Neural machine translation by jointly learning to align and translate. In Proceedings of the International Conference on Learning Representations (ICLR). https://arxiv.org/abs/1409.0473

2. Chomsky, N. (1957). Syntactic structures. The Hague: Mouton.

3. Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (pp. 4171–4186). Association for Computational Linguistics. https://doi.org/10.18653/v1/N19-1423

4. Forcada, M. L., & Ñeco, R. P. (1997). Recursive hetero-associative memories for translation. Neurocomputing, 14(1), 1–9.

5. Jurafsky, D., & Martin, J. H. (2023). Speech and language processing (3rd ed.). Draft version. https://web.stanford.edu/~jurafsky/slp3/

6. Khujaev, D. G. (2025, May 19). Harnessing artificial intelligence in English and Uzbek language teaching in the era of digital transformation. Zenodo. https://doi.org/10.5281/zenodo.15466016