Abstract
Ushbu maqolada paxta xom ashyosini tasniflash va baholashda konvolyutsion neyron tarmoqlar (CNN) asosidagi sun’iy intellekt tizimlarining amaliy qo‘llanilishi yoritilgan. CNN algoritmlari tasvirlarni qatlamli o‘rganish orqali tolaning uzunligi, rangi, ifloslik darajasi va tolalar zichligini avtomatik aniqlaydi. AQSh, Xitoy va Hindistonning yirik paxta qayta ishlash korxonalarida CNN modellarini ishlab chiqarish liniyalariga integratsiya qilish natijasida sifat nazoratining aniqligi 97–99 foizga, tahlil tezligi esa 15 barobar oshgan. Tahlillar CNN texnologiyasining paxta xom ashyosini avtomatik tasniflash, chiqindini kamaytirish va energiya tejamkorligini ta’minlashdagi imkoniyatlarini ko‘rsatadi
References
1. Chen, Y., Li, Z., & Zhang, W. (2024). Deep learning approach for cotton fiber quality detection. Computers and Electronics in Agriculture, 212, 108102.
2. Rahman, M., Zhou, X., & Lu, H. (2023). Machine vision-based cotton fiber analysis. Textile Research Journal, 93(8), 1045–1057.
3. Yang, Z. Y., Sun, J. F., & Liu, C. (2025). A comprehensive review of deep learning applications in cotton industry. Applied Sciences, 15(3), 1123.
4. Barnes, E., Morgan, G., Hake, K., & Devine, J. (2021). Opportunities for robotic systems and automation in cotton production. AgriEngineering, 3(2), 339–362.
5. Bolton, W. (2022). Programmable Logic Controllers (7th ed.). Elsevier.
6. Tojaliyev, M., Oripov, J. I., & Abdumalikov, I. (2022). Paxta tozalash texnologiyasi. Toshkent: Yangi Asr Avlodi.
7. Tojaliyev , D., & Xomidov , V. (2025). SENSORLI IPLAR YORDAMIDA SMART TRIKOTAJ MATOLARNING HARAKATGA SEZGIRLIGI: REABILITATSIYA VA SPORT UCHUN QO‘LLANILISHI. Journal of Science-Innovative Research in Uzbekistan, 3(6), 494–498. Retrieved from https://inlibrary.uz/index.php/journal-science-innovative/article/view/112004