MEVA VA SABZAVOTLARNI SARALASHDA KOMPYUTERLI KO‘RISH VA YAQIN INFRAQIZIL NURLANISH (NIR-NEAR-INFRARED) TIZIMINI QO‘LLASH.
PDF

Keywords

Kompyuterli ko‘rish, yaqin infraqizil nurlanish (NIR), avtomatik saralash, meva va sabzavot sifati, mashinali o‘rganish, oziq-ovqat xavfsizligi, spektral tahlil, PCA.

Abstract

Ushbu maqolada meva va sabzavotlarni avtomatik tarzda sifatiga qarab saralashda kompyuterli ko‘rish (computer vision) va yaqin infraqizil nurlanish (NIR – Near-Infrared) texnologiyalarini integratsiyalash orqali samaradorlikni oshirish masalasi yoritilgan. An’anaviy vizual baholash usullariga nisbatan bu yondashuv mahsulotning tashqi va ichki sifat ko‘rsatkichlarini tezkor, kontakt bo‘lmagan va ishonchli tarzda aniqlash imkonini beradi. Shuningdek, mashinali o‘rganish (ML) metodlari yordamida ushbu tizimlarni yanada optimallashtirish va amaliyotga tatbiq etish yo‘llari ko‘rib chiqadi.

PDF

References

1. Kamruzzaman, M., et al. "Non-destructive detection and quantification of fruit quality by NIR spectroscopy: A review." Trends in Food Science & Technology, 2016.

2. Gowen, A.A., et al. "Applications of hyperspectral imaging in the food industry." Food Bioprocess Technol., 2007.

3. Du, C.-J., & Sun, D.-W. "Recent developments in the applications of image processing techniques for food quality evaluation." Trends in Food Science & Technology, 2004.

4. Mahayothee, B., et al. "Ripeness classification of mangoes based on support vector machine and hyperspectral imaging." Biosystems Engineering, 2007.

5. Heinemann, P.H., et al. "Nondestructive detection of internal quality in apples using NIR spectroscopy." Transactions of the ASABE, 2001.